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ABSTRACT

In this paper, all 2-cyclotomic cosets modulo pn are constructed when 2 is a primitive

root modulo pn. When the order of 2 is p−1
2

modulo p and the order of 2 is
p(p−1)

2

modulo p2, we construct all 2-cyclotomic cosets modulo p2. Also, when 2 has order
p2(p−1)

2
modulo p3, we derive all 2-cyclotomic cosets modulo p3. Furthermore, four

results on all s-cyclotomic cosets modulo pq are obtained by considering three di�erent

possible orders of s modulo p and q, for distinct odd primes p, q. Finally, we use the

2-cyclotomic cosets modulo 9, 25 and 49 to construct binary codes of length 9, 15

and 49, respectively, and hence the access sets for the secret sharing scheme based on

some of these families of binary codes are discussed.

Keywords: Cyclotomic cosets, minimum distance, secret sharing, cyclic codes, idem-

potents.



i
i

�Cyclotomic*Cosets,*Codes*and*Secret*Sharing� � 2017/9/14 � 14:01 � page 60 � #2 i
i

i
i

i
i

Wong, D. C. K.

1. Introduction

Throughout this paper, we let q be a prime, n a positive integer and
gcd(q, n) = 1. The q−cyclotomic coset modulo n containing i is de�ned by
Ci = {iqj(mod n) ∈ Zn | j = 0, 1, 2, . . . }. A subset {i1, . . . , it} of Zn is
called a complete set of representatives of q−cyclotomic cosets modulo n if
Ci1 , Ci2 , . . . , Cit are distinct and

⋃t
j=1 Cij = Zn. Furthermore, any two cyclo-

tomic cosets are either equal or disjoint. Hence, we see that Ci1 , Ci2 , . . . , Cit
partition Zn.

Dating back to 1948, the birth of coding theory was inspired by the paper
called "A Mathematical Theory of Communication" written by Shannon (Shan-
non, 1948). Coding theory is the study of the properties of error-correcting
codes which are used for data compression, cryptography and network cod-
ing. A special type of linear code is cyclic code which was �rst studied by
Prange in 1957. In recent years, many authors have used the cyclotomic cosets
approach to construct various families of cyclic codes, see MacWilliams and
Sloane (1977), Wong and Ang (2013). Construction of binary idempotents
from the cyclotomic cosets is easy. However, there is not much information can
be obtained from the generated codes. In years 1997 and 2003, respectively,
Arora and Pruthi gave an explicit expression for all q-cyclotomic cosets mod-
ulo pn when q is a primitive root modulo pn (Arora and Pruthi, 1997) and

when q has order φ(pn)
2 modulo pn (Arora and Pruthi, 1999). Then, in Sharma

et al. (2004), the authors obtained all q-cyclotomic cosets modulo pn with a
more subtle conditions. Later in year 2012, Sharma and Bakshi (Sharma and
G.K.Bakshi, 2012) considered a more general type of q-cyclotomic cosets mod-
ulo pm to compute the weight distribution of some irreducible cyclic codes. In
Singh and Arora (2010), q-cyclotomic cosets modulo 2n when q is quadratic
residue modulo 2n is obtained. More recently, l-cyclotomic cosets modulo the
product of two distinct primes power are studied in Arora et al. (2002) and
Sahni and Sehgal (2012).

This paper is organized as follows: In section 2, we construct 2-cyclotomic
cosets modulo pn when 2 is a primitive root modulo pn and when the order of 2
modulo p is p−12 . Furthermore, we investigate the structures of all s-cyclotomic
cosets modulo pq when s is a primitive root modulo q and s is a primitive root
modulo p, s has order q−1

2 modulo q and s has order p−1
2 modulo p, and s has

order q−1
2 modulo q and s is a primitive root modulo p. For all these cases,

p and q are distinct odd primes. In section 3, we construct three families of
binary cyclic codes of length 9, 25 and 49 from 2-cyclotomic cosets modulo 9,
modulo 25 and modulo 49, respectively. Hence, we investigate the access sets
for the secret sharing based on some of these families of binary cyclic codes.
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Finally, in section 4 we give a conclusion and future research directions.

2. Cyclotomic Cosets

Let n be an integer > 1 and gcd(a, n) = 1. The order of a modulo n is the
smallest integer k such that ak ≡ 1(mod n). When k = φ(n), where φ is the
Euler-phi function, then a is called a primitive root of the integer n. We need
the following result from Sharma and G.K.Bakshi (2012).

Lemma 2.1. Suppose α is a primitive root modulo pn. Then, α is a primitive

root modulo pn−j also, for all j, 0 ≤ j ≤ n− 1.

We start by showing all 2-cyclotomic cosets modulo pn when 2 is a primitive
root modulo pn in the following theorem.

Theorem 2.1. Let p be an odd prime and n ≥ 2. Suppose 2 is a primitive

root modulo pn. Then, there are exactly n nonzero 2-cyclotomic cosets modulo

pn with |C1| = pn − pn−1, |Cp| = pn−1 − pn−2, . . . , |Cpn−1 | = p− 1.

Proof. Given 2 is a primitive root modulo pn, then 2p
n−pn−1 ≡ 1(mod pn). By

Lemma 2.1, we have 2p
n−1−pn−2 ≡ 1(mod pn−1), 2p

n−2−pn−3 ≡ 1(mod pn−2),

. . . , 2p
2−p ≡ 1(mod p2) and 2p−1 ≡ 1(mod p).

The 2-cyclotomic coset modulo pn with coset representative 1 is C1 =
{1, 2, 22, ..., 2t1−1}, where 2t1 ≡ 1(mod pn). Clearly, t1 = pn − pn−1 and so
|C1| = pn−pn−1. Next, since p /∈ C1, we construct Cp = {p, 2p, 22p, ..., 2tp−1p},
where 2tpp ≡ p(mod pn) which is equivalent to 2tp ≡ 1(mod pn−1) and so
tp = pn−1 − pn−2 = |Cp|. Now, we suppose that p2 ∈ Cp. Then, p2 = 2ip
for some i implies that p = 2i which is a contradiction. Hence, p2 /∈ Cp.
Since p2 /∈ C1 and p2 /∈ Cp, we consider Cp2 = {p2, 2p2, 22p2, ..., 2tp2−1p2},
where 2tp2p2 ≡ p2(mod pn) which is equivalent to 2tp2 ≡ 1(mod pn−2) and so
tp2 = pn−2 − pn−3 = |Cp2 |. Continue in this way, we obtain the rest of the
2-cyclotomic cosets modulo pn.

Finally, note that |C1|+|Cp|+|Cp2 |+· · ·+|Cpn−1 |+|{0}| = |Zpn |. Therefore,
we conclude that Zpn = C1 ∪ Cp ∪ · · · ∪ Cpn−1 ∪ {0} and Ci ∩ Cj = ∅ for all
i, j ∈ {1, p, p2, . . . , pn−1}.

Next, we construct 2-cyclotomic cosets modulo pn when the order of 2
modulo p is p−1

2 for the cases when n = 2 and 3. Also, we assume q is an odd
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prime such that q < p.

Theorem 2.2. Suppose 2 has order p−1
2 modulo p and 2 has order

p(p−1)
2 mod-

ulo p2. Then, there are exactly 4 distinct nonzero 2-cyclotomic cosets modulo

p2.

Proof. The cyclotomic coset modulo p2 with coset representative 1 is C1 =

{1, 2, 22, ..., 2t1−1}, where 2t1 ≡ 1(mod p2). Since 2 has order p(p−1)
2 modulo

p2, then we have t1 = p(p−1)
2 and so |C1| = p(p−1)

2 . Next, we construct the
second 2-cyclotomic coset modulo p2 with coset representative q, that is, Cq =
{q, 2q, 22q, ..., 2tq−1q}, where 2tqq ≡ q(mod p2). The condition 2tqq ≡ q(mod
p2) can be reduced to 2tq ≡ 1(mod p2) since p, q are distinct odd primes, which

gives us tq = p(p−1)
2 and so |Cq| = p(p−1)

2 .

Now, since p /∈ C1 and p /∈ Cq, we consider Cp = {p, 2p, ..., 2tp−1p}, where
2tpp ≡ p(mod p2) which is equivalent to 2tp ≡ 1(mod p). Since 2 has order
p−1
2 modulo p, then we have tp = p−1

2 and so |Cp| = p−1
2 . Finally, as pq /∈

C1 ∪ Cq ∪ Cp, we construct the last nonzero cyclotomic coset modulo p2, that
is, Cpq = {pq, 2pq, ..., 2tpq−1pq}, where 2tpqpq ≡ pq(mod p2) which is equivalent
to 2tpqq ≡ q(mod p). Similarly, it can be reduced to 2tpq ≡ 1(mod p). Then,
we have tpq = p−1

2 and so |Cpq| = p−1
2 .

Combining all above, we have |C1| = |Cq| = p(p−1)
2 and |Cp| = |Cpq| = p−1

2 .
Clearly, |C1| + |Cq| + |Cp| + |Cpq| + |{0}| = |Zp2 |. Hence, C1, Cq, Cp and Cpq
are the required 2-cyclotomic cosets modulo p2.

As an illustration, we list all 2-cyclotomic cosets modulo 72.

C0 = {0},

C1 = {1, 2, 4, 8, 16, 32, 15, 30, 11, 22, 44, 39, 29, 9, 18, 36, 23, 46, 43, 37, 25},

C3 = {3, 6, 12, 24, 48, 47, 45, 41, 33, 17, 34, 19, 38, 27, 5, 10, 20, 40, 31, 13, 26},

C7 = {7, 14, 28} and

C21 = {21, 42, 35}.

Theorem 2.3. Suppose 2 has order
p2(p−1)

2 modulo p3. Then, there are exactly
6 distinct nonzero 2-cyclotomic cosets modulo p3.

Proof. Given 2 has order p2(p−1)
2 modulo p3, then 2

p2(p−1)
2 ≡ 1(mod p3). Thus,

by Euler's Theorem together with the de�nition of order, we have 2
p(p−1)

2

≡ 1(mod p2) and 2
p−1
2 ≡ 1(mod p). The cyclotomic coset modulo p3 with
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coset representative 1 is C1 = {1, 2, 22, ..., 2t1−1}, where 2t1 ≡ 1(mod p3).

From above, we have t1 = p2(p−1)
2 and so |C1| = p2(p−1)

2 .

Clearly, q /∈ C1, so we construct Cq = {q, 2q, 22q, ..., 2tq−1q}, where 2tqq ≡
q(mod p3) which can be reduced to 2tq ≡ 1(mod p3), which gives us tq = p2(p−1)

2

and so |Cq| = p2(p−1)
2 . Since p /∈ C1∪Cq, we consider the third cyclotomic coset

modulo p3 with coset representative p, that is, Cp = {p, 2p, 22p, ..., 2tp−1p},
where 2tpp ≡ p(mod p3) which is equivalent to 2tp ≡ 1(mod p2). Then, we

have tp = p(p−1)
2 and so |Cp| = p(p−1)

2 .

Similar to previous theorem, we consider pq which is not in all the previous
cyclotomic cosets and construct Cpq = {pq, 2pq, ..., 2tpq−1pq}, where 2tpqpq ≡
pq(mod p3) which is equivalent to 2tpqq ≡ q(mod p2). It can be reduced to

2tpq ≡ 1(mod p2). Then, we have that tpq = p(p−1)
2 and so |Cpq| = p(p−1)

2 .

As p2 /∈ C1 ∪ Cq ∪ Cp ∪ Cpq, we consider Cp2 = {p2, 2p2, ..., 2tp2−1p2}, where
2tp2p2 ≡ p2(mod p3) which is equivalent to 2tp2 ≡ 1(mod p) and so tp2 =
p−1
2 . Finally, we consider p2q as it is also not in the other �ve cyclotomic

cosets modulo p3 and hereby construct the cyclotomic coset modulo p3, that
is, Cp2q = {p2q, 2p2q, ..., 2tp2q−1p2q}, where 2tp2qp2q ≡ p2q(mod p3) which is
equivalent to 2tp2qq ≡ q(mod p). Later, it is reduced to 2tp2q ≡ 1(mod p).
Clearly, we see that tp2q = p−1

2 = |Cp2q|. The rest of the properties will then
follow immediately.

Here, we list all 2-cyclotomic cosets modulo 73, which is the smallest case
covered by previous theorem.
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C0 ={0},

C1 ={1, 2, 4, 8, 16, 32, 64, 128, 256, 169, 338, 333, 323, 303, 263, 183, 23,

46, 92, 184, 25, 50, 100, 200, 57, 114, 228, 113, 226, 109, 218, 93, 186, 29, 58,

116, 232, 121, 242, 141, 282, 221, 99, 198, 53, 106, 212, 81, 162, 324, 305, 267,

191, 39, 78, 156, 312, 281, 219, 95, 190, 37, 74, 148, 296, 249, 155, 310, 277, 211

79, 158, 316, 289, 235, 127, 254, 165, 330, 317, 291, 239, 135, 270, 197, 51, 102,

204, 65, 130, 260, 177, 11, 22, 44, 88, 176, 9, 18, 36, 72, 144, 288, 233, 123, 246,

149, 298, 253, 163, 326, 309, 275, 207, 71, 142, 284, 225, 107, 214, 85, 170, 340,

337, 331, 319, 295, 247, 151, 302, 261, 179, 15, 30, 60, 120, 240, 137, 274, 205,

67, 134, 268, 193, 43, 86, 172},

C3 ={3, 6, 12, 24, 48, 96, 192, 41, 82, 164, 328, 313, 283, 223, 103,

206, 69, 138, 276, 209, 75, 150, 300, 257, 171, 342, 341, 339, 335, 327, 311,

279, 215, 87, 174, 5, 10, 20, 40, 80, 160, 320, 297, 251, 159, 318, 293, 243, 143,

286, 229, 115, 230, 117, 234, 125, 250, 157, 314, 285, 227, 111, 222, 101, 202,

61, 122, 244, 145, 290, 237, 131, 262, 181, 19, 38, 76, 152, 304, 265, 187, 31, 62,

124, 248, 153, 306, 269, 195, 47, 94, 188, 33, 66, 132, 264, 185, 27, 54, 108, 216,

89, 178, 13, 26, 52, 104, 208, 73, 146, 292, 241, 139, 278, 213, 83, 166, 332, 321,

299, 255, 167, 334, 325, 307, 271, 199, 55, 110, 220, 97, 194, 45, 90, 180, 17, 34,

68, 136, 272, 201, 59, 118, 236, 129, 258, 173},

C7 ={7, 14, 28, 56, 112, 224, 105, 210, 77, 154, 308, 273, 203, 63, 126, 252, 161, 322, 301, 259, 175},

C21 ={21, 42, 84, 168, 336, 329, 315, 287, 231, 119, 238, 133, 266, 189, 35, 70, 140, 280, 217, 91, 182},

C49 ={49, 98, 196},

C147 ={147, 294, 245}

Finally, we drawn our attention to study all s− cyclotomic cosets modulo
pq, where p, q and s are distinct odd primes.

Theorem 2.4. Let p, q, s be distinct odd primes. Suppose s is a primitive

root modulo q and s is a primitive root modulo p. Then there are 2 + h dis-

tinct nonzero s-cyclotomic cosets modulo pq, where h = gcd(p − 1, q − 1).
Furthermore, the h distinct nonzero s-cyclotomic cosets modulo pq have size

m = lcm(p− 1, q − 1).

Proof. We �rst construct the s-cyclotomic coset modulo pq which contains p.
Note that Cp = {p, sp, . . . , stp−1p}, where stpp ≡ p(mod pq). The condition
stpp ≡ p(mod pq) implies q | stp − 1. Since s has order q− 1 modulo q, then we
have tp = q−1 and so |Cp| = q−1. A similar argument shows that |Cq| = p−1.

Next, we consider any a ∈ {1, 2, . . . , pq} with gcd(a, pq) = 1. Then, we
see that gcd(a, p) = 1 and gcd(a, q) = 1. The s-cyclotomic coset modulo n
containing a is Ca = {a, as, . . . , asta −1}, where staa ≡ a(mod pq). The choice
of a ensures that pq | sta − 1 which implies p | sta − 1 and q | sta − 1. Since s
is a primitive root modulo p and modulo q, we obtain ta = lcm(p − 1, q − 1).
Therefore, we obtained |Ca| = lcm(p− 1, q − 1) for any a ∈ {1, 2, . . . , pq} with
gcd(a, pq) = 1.
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Finally, we let h be the number of s-cyclotomic cosets modulo pq containing
a and note that |C0| = |{0}| = 1. Hence, |C0| + |Cp| + |Cq| +

∑
a |Ca| = pq.

We then have 1 + (q − 1) + (p − 1) + h.lcm(p − 1, q − 1) = pq and so h =
pq−q−p+1

lcm(p−1,q−1) = gcd(p− 1, q − 1).

Theorem 2.5. Let p, q, s be distinct odd primes. Suppose s has order q−1
2

modulo q and s has order p−1
2 modulo p. Then there are 4 +h distinct nonzero

s-cyclotomic cosets modulo pq, where h = (p−1)(q−1)
lcm( q−1

2 , p−1
2 )

. Furthermore, the h

distinct nonzero s-cyclotomic cosets modulo pq have size m = lcm( q−12 , p−12 ).

Proof. Since s has order q−1
2 modulo q, then we have |Cp| = q−1

2 . Also,

as s has order p−1
2 modulo p, then we have |Cq| = p−1

2 . Next, let k be a
prime such that q - k. The s-cyclotomic coset modulo pq containing kp is
Ckp = {kp, skp, s2kp, . . . , stkp−1kp}, where stkpkp ≡ kp(mod pq) which implies
q | (stkp − 1) and so tkp = q−1

2 . Thus, |Ckp| = q−1
2 . Similarly, if p - j, then

|Cjq| = p−1
2 .

Next, we let h be the nonzero s-cyclotomic cosets modulo pq of size m, then
we have 1 + 2. q−12 + 2.p−12 +h.m = pq, that is, hm = (p−1)(q−1). Finally, we
consider any a /∈ {p, q, kp, jq}. The s-cyclotomic coset modulo pq containing a
is Ca = {a, as, as2, . . . , asta−1}, where asta ≡ a(mod pq) which is equivalent to

pq|(sta − 1). Thus, ta = m = lcm( q−12 , p−12 ) and so h = (p−1)(q−1)
m .

The following theorem can be proved in the similar way as theorems above.

Theorem 2.6. Let p, q, s be distinct odd primes. Suppose s has order q−1
2 mod-

ulo q and s is a primitive root modulo p. Then there are 3 +h distinct nonzero

s-cyclotomic cosets modulo pq, where h = (p−1)(q−1)
lcm( q−1

2 ,p−1) . Furthermore, the h

distinct nonzero s-cyclotomic cosets modulo pq have size m = lcm( q−12 , p− 1).

3. Codes and Secret Sharing

In coding theory, a code C of length n and size M over Fq is called a q−ary
(n,M)-code. The Hamming distance of two codewords x and y in C, denoted
by d(x, y) is de�ned as the number of symbols at which x and y di�er. The
minimum distance of a code is denoted by d or d(C). When the d is known,
we call C a q− ary (n,M, d)-code over Fq. The minimum distance is a very
important parameter as it tell us the number of errors it can correct or detect
when transmitting codewords across a noisy channel, refer MacWilliams and
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Sloane (1977). In general, there are two main types of codes which are linear
code and nonlinear code. A code C of length n is called a linear code if C
is a subspace of the vector space Fnq , else, it is a nonlinear code. Since linear
code is a subspace, it is also a vector space and is spanned by a basis. The
basis for a linear code is often represented in the form of a matrix which is
known as the generator matrix where the rows of the matrix form a basis of
the linear code. We often called linear code as [n, k]-code or if the d is known,
it is called a [n, k, d]-code, where k is the dimension of the subspace. Next,
the weight of a codeword is de�ned as the number of nonzero symbols in a
nonzero codeword. The minimum distance d is equals to the minimum weight
of a nonzero codeword in C if C is a linear code. This property is advantageous
as we do not need to compare every codeword to �nd the distance, instead we
just look at each nonzero codeword for the weight which saves more steps and
time. In this paper, we are interested in constructing a special type of linear
code which is know as the cyclic codes. A linear code C is cyclic if any cyclic
shift of a codeword is also a codeword, i.e., whenever (c0, c1, ..., cn−1) is in C
then so is (cn−1, c0, ..., cn−2). For more information on cyclic codes, refer to
MacWilliams and Sloane (1977).

3.1 Binary Cyclic Codes of length 9

In this section, we construct binary cyclic codes with length n = 9. Since
2 is a primitive root modulo 3, by Theorem 2.1, there are exactly two nonzero
2−cyclotomic cosets modulo 9 which is listed as follows:

C0 = {0}, C1 = {1, 2, 4, 8, 7, 5} and C3 = {3, 6}.

To represent these cyclotomic cosets in term of group ring, we let Ω1 =∑
s∈C1

gs ∈ F2[Z9] and Ω2 =
∑
r∈C3

gr ∈ F2[Z9]. In term of group ring,
the cyclotomic cosets of F2[Z9] are

Ω0 = 1,Ω1 = g1 + g2 + g4 + g8 + g7 + g5, and Ω2 = g3 + g6.

We see that Ω2
0 = 12 = 1 = Ω0 and easily verify that Ω2

1 = Ω1 and Ω2
2 =

Ω2 as well as the union of di�erent idempotents are also idempotent. These
idempotent are called the generating idempotent as each of them can generate
a cyclic code. For the following calculations, we are using the methods and
theorems derived in MacWilliams and Sloane (1977).

Clearly, the generator polynomial for Ω0 is 1, so 〈Ω0〉 is a [9, 9, 1]-cyclic
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code. For Ω1, the generator matrix G is found as follows:(
1 0 1 1 0 1 1 0 1
1 1 0 1 1 0 1 1 0
0 1 1 0 1 1 0 1 1

)
R2→R2+R1−−−−−−−−→

(
1 0 1 1 0 1 1 0 1
0 1 1 0 1 1 0 1 1
0 1 1 0 1 1 0 1 1

)
R3→R3+R2−−−−−−−−→

(
1 0 1 1 0 1 1 0 1
0 1 1 0 1 1 0 1 1
0 0 0 0 0 0 0 0 0

)
=
(
G
0

)
From above, we see that the dimension of the cyclic code is 2 and the minimum
distance is 6. Thus, 〈Ω1〉 is a [9, 2, 6]- binary cyclic code.

Next, the generator polynomial for 〈Ω2〉 is obtained as follows:

g(x) = gcd(g9 + 1, g3 + g6) = gcd(g3 + g6, 1 + g3) = 1 + g3.

The dimension of the cyclic code is 6 and the minimum distance is 2. Hence,
〈Ω2〉 is a [9, 6, 2]-cyclic code.

Since Ω0 + Ω1 is also a generating idempotent, the corresponding generator
polynomial is determined as follows:

g(x) =gcd(g9 + 1, 1 + g1 + g2 + g4 + g8 + g7 + g5)

=gcd(1 + g1 + g2 + g4 + g8 + g7 + g5, g3 + g4 + g6 + g7)

=gcd(g3 + g4 + g6 + g7, 1 + g + g2)

=1 + g + g2.

The dimension of this code is 7 and the minimum distance is 2. 〈Ω0 + Ω1〉 is a
[9, 7, 2]-cyclic code. Similarly, we found that 〈Ω0 + Ω2〉 is a [9, 3, 3]-cyclic code.

Next, the generator polynomial for 〈Ω1 + Ω2〉 is

g(x) =gcd(g9 − 1, g1 + g2 + g3 + g4 + g5 + g6 + g7 + g8)

=gcd(g1 + g2 + g3 + g4 + g5 + g6 + g7 + g8, 1 + g)

=1 + g.

Clearly, the dimension of the code is 8 while the minimum distance is 2. Hence,
〈Ω1 + Ω2〉 is a [9, 8, 2]-cyclic code. Finally, by using a similar argument 〈Ω0 +
Ω1 + Ω2〉={000000000, 111111111} which is a [9, 1, 9]-binary cyclic code.

Secret sharing scheme is used to break down a secret into smaller portions
call shares and later distributed to other participants by a dealer. The group
of participants who hold the shares that can reconstruct the secret is called the
access set. If a group of participants can recover the secret by combining their
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shares, then any group of participants containing this group can also recover
the secret. The group of participants is known as the minimal access set if
they can recover the secret with their shares, while any of its proper subgroups
cannot do so.

Next, we randomly choose 〈Ω1〉 to construct a secret sharing scheme. 〈Ω1〉
is a [9, 2, 6]-binary cyclic code which have the following codewords:

{000000000, 101101101, 110110110, 011011011}.

In the secret sharing scheme based on [9, 2, 6]-cyclic code, there are 8 partici-
pants and a dealer involved. There are only two access sets as follows:

{1, 3, 4, 6, 7} and {2, 3, 5, 6, 8}

{1, 3, 4, 6, 7} denotes the access set {P1, P3, P4, P6, P7}. From above, we can see
that participants 3 and 6 are involved in all the access sets. Hence, whoever
who need to �nd the secret must include these two participants. In each access
set, there are exactly 5 participants. Every participant in the set {1, 2, 4, 5, 7, 8}
is in exactly one access set.

Now, we consider 〈Ω2〉, a [9, 6, 2]− binary cyclic code which have the fol-
lowing codewords:

{000000000, 010010000, 001001000, 000100100, 000010010, 000001001,

100000100, 010000010, 001000001, 100100000, 010111101, 101011110,

010101111, 101010111, 110101011, 111010101, 111101010, 011110101,

101111010, 101100001, 110110000, 011011000, 001101100, 000110110,

000011011, 100001101, 110000110, 011000011, 110100010, 011010001,

101101000, 010110100, 001011010, 000101101, 100010110, 010001011,

101000101, 100111011, 110011101, 111001110, 011100111, 101110011,

110111001, 111011100, 011101110, 001110111, 100011111, 110001111,

111000111, 111100011, 111110001, 111111000, 011111100, 001111110,

000111111, 101001100, 010100110, 001010011, 100101001, 110010100,

011001010, 001100101, 100110010, 010011001}

Throughout all these codewords, there are only two minimal codewords. So,
there are only 2 access sets as follows:{3} and {6}. Both participants 3 and 6
can solely determine the secret. If participant 3 cheats and recover the secret
by himself, there is no one to govern his actions. Hence, this secret sharing
scheme may expose the secret easily. To describe in a more business-related
way, there are two business partner A and B which represent participants 3
and 6 here where both of them have full access right to their shared account.
Since A has the full access right, if A became greedy, he can take all the money
invested and run away.
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3.2 Binary Cyclic Codes of length 25

Next, we consider the case p = 5. From Theorem 2.1, we veri�ed that 2 is
a primitive root modulo 5, so there are exactly two nonzero cyclotomic cosets
modulo 25. Hence, we let Ω1 =

∑
h∈C1

gh ∈ F2[Z25] and Ω2 =
∑
k∈C5

gk ∈
F2[Z25]. Then, we see that all 2-cyclotomic cosets modulo 25 are as follows:

C0 = {0}, C5 = {5, 10, 20, 15} and
C1 = {1, 2, 4, 8, 16, 7, 14, 3, 6, 12, 24, 23, 21, 17, 9, 18, 11, 22, 19, 13}.

In term of group ring, the cyclotomic cosets of F2[Z25] are

Ω0 =g0,

Ω1 =g1 + g2 + g4 + g8 + g16 + g7 + g14 + g3 + g6 + g12+

g24 + g23 + g21 + g17 + g9 + g18 + g11 + g22 + g19 + g13,

Ω2 =g5 + g10 + g20 + g15.

Next, we use Ω1 to construct a cyclic code of length 9, we perform Gaussian
elimination on the matrix formed by the generating idempotent to obtain the
following generator matrix:

G =

0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1
1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1
1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1
1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1

 .

Clearly, the dimension is 4. Then we have 24 = 16 codewords. We easily list
down all the codewords as follows:

〈Ω1〉 = {0000000000000000000000000, 1101111011110111101111011,

1110111101111011110111101, 1111011110111101111011110,

0111101111011110111101111, 1011110111101111011110111,

1010010100101001010010100, 0101001010010100101001010,

0010100101001010010100101, 1001010010100101001010010,

0100101001010010100101001, 1000110001100011000110001,

1100011000110001100011000, 0110001100011000110001100,

0011000110001100011000110, 0001100011000110001100011}.

We easily deduced that 〈Ω1〉 is a 2-constant weight code as it only has two type
of weight which are 10 and 20.

Now, we construct the secret sharing scheme based on a [25, 4, 10]-code
where the secrets are shared among 24 participants. One of the 25 participants
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is a trusted dealer that distributes the secrets so he is excluded. The access set
corresponding to the minimal codewords are as follows:

{4, 5, 9, 10, 14, 15, 19, 20, 24}, {1, 5, 6, 10, 11, 15, 16, 20, 21},
{2, 5, 7, 10, 12, 15, 17, 20, 22}, {3, 5, 8, 10, 13, 15, 18, 20, 23}.

Only the participants P5, P10, P15, P20 is in all the 4 access sets. So in order to
recover the secret, these four participants must be included. Each access set
contains exactly 9 participants.

3.3 Binary Cyclic Codes of length 49

In this section, we construct binary cyclic codes of length 49 by using the
2-cyclotomic cosets modulo 72 obtained from the previous section. Recall that
all 2-cyclotomic cosets modulo 49 are listed in section 2. In term of group
ring F2[Z49], we let Ω1 =

∑
s∈C1

gs, Ω2 =
∑
r∈C3

gr, Ω3 =
∑
t∈C7

gt and

Ω4 =
∑
v∈C21

gv. Then, we have

Ω0 =g0,

Ω1 =g1 + g2 + g4 + g8 + g16 + g32 + g15 + g30 + g11 + g22 + g44+

g39 + g29 + g9 + g18 + g36 + g23 + g46 + g43 + g37 + g25,

Ω2 =g3 + g6 + g12 + g24 + g48 + g47 + g45 + g41 + g33 + g17 + g34+

g19 + g38 + g27 + g5 + g10 + g20 + g40 + g31 + g13 + g26,

Ω3 =g7 + g14 + g28 and Ω4 = g21 + g42 + g35.

Let Ω1 =
∑
s∈C1

gs ∈ F2[Z49]. The generator polynomial for C = 〈Ω1〉 is
computed as follows :

g(x) =gcd(g49 + 1,Ω1)

=1 + g + g3 + g7 + g8 + g10 + g14 + g15 + g17 + g21 + g22 + g24+

g28 + g29 + g31 + g35 + g36 + g38 + g42 + g43 + g45.

From above, we see that the dimension of C is 4 and so C has the following
16 codewords.
0000000000000000000000000000000000000000000000000,

1111111111111111111111111111111111111111111111111,

1101000110100011010001101000110100011010001101000,

0110100011010001101000110100011010001101000110100,

0011010001101000110100011010001101000110100011010,

0001101000110100011010001101000110100011010001101,

1000110100011010001101000110100011010001101000110,

0100011010001101000110100011010001101000110100011,
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1010001101000110100011010001101000110100011010001,

0101110010111001011100101110010111001011100101110,

0010111001011100101110010111001011100101110010111,

1001011100101110010111001011100101110010111001011,

1100101110010111001011100101110010111001011100101,

1110010111001011100101110010111001011100101110010,

0111001011100101110010111001011100101110010111001,

1011100101110010111001011100101110010111001011100.

From above, we see that the minimum distance of C is 21. Hence, we have a
[49, 4, 21]-binary code. For the secret sharing scheme based on [49, 4, 21]-code,
the 7 access sets are as follows:

{1, 3, 7, 8, 10, 14, 15, 17, 21, 22, 24, 28, 29, 31, 35, 36, 38, 42, 43, 45},
{4, 5, 7, 11, 12, 14, 18, 19, 21, 25, 26, 28, 32, 33, 35, 39, 40, 42, 46, 47},
{2, 6, 7, 9, 13, 14, 16, 20, 21, 23, 27, 28, 30, 34, 35, 37, 41, 42, 44, 48},
{1, 4, 6, 7, 8, 11, 13, 14, 15, 18, 20, 21, 22, 25, 27, 28, 29, 32, 34, 35, 36, 39,

41, 42, 43, 46, 48}, {1, 2, 5, 7, 8, 9, 12, 14, 15, 16, 19, 21, 22, 23, 26, 28, 29,

30, 33, 35, 36, 37, 40, 42, 43, 44, 47}, {2, 3, 4, 7, 9, 10, 11, 14, 16, 17, 18, 21,

23, 24, 25, 28, 30, 31, 32, 35, 37, 38, 39, 42, 44, 45, 46}, {3, 5, 6, 7, 10, 12, 13,

14, 17, 19, 20, 21, 24, 26, 27, 28, 31, 33, 34, 35, 38, 40, 41, 42, 45, 47, 48}.

Participants 7, 14, 21, 28, 35, 42 appears in all access sets. Hence, any group
who can determine the secret must include these 6 participants. The remaining
participants must be in exactly 3 access sets.

Next, we use 〈Ω1 + Ω2〉 which is a [49, 6, 14]- code to construct a secret
sharing scheme. As the dimension is 6, there are 64 codewords. The dealer
distributes the shares of the secret among 48 participants. The 6 access sets
are as follows:

{1, 7, 8, 14, 15, 21, 22, 28, 29, 35, 36, 42, 43},
{2, 7, 9, 14, 16, 21, 23, 28, 30, 35, 37, 42, 44},
{3, 7, 10, 14, 17, 21, 24, 28, 31, 35, 38, 42, 45},
{4, 7, 11, 14, 18, 21, 25, 28, 32, 35, 39, 42, 46},
{5, 7, 12, 14, 19, 21, 26, 28, 33, 35, 40, 42, 47},
{6, 7, 13, 14, 20, 21, 27, 28, 34, 35, 41, 42, 48}.

Clearly, participants 7, 14, 21, 28, 35, 42 appears in all access sets. Hence,
any group who can determine the secret must include these 6 participants.
Each participant in the set {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19,
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20, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46,
47, 48} is in exactly one access set. The number of participants in each access
set is 13.

For secret sharing based on [49, 3, 28]-code, secret are distributed as shares
to 48 participants by a dealer. The minimal codeword are listed below:

{0000000000000000000000000000000000000000000000000,

0111010011101001110100111010011101001110100111010,

0011101001110100111010011101001110100111010011101,

0100111010011101001110100111010011101001110100111,

1001110100111010011101001110100111010011101001110,

1010011101001110100111010011101001110100111010011,

1101001110100111010011101001110100111010011101001,

1110100111010011101001110100111010011101001110100}

In the secret sharing constructed based on [49, 3, 28]- cyclic code, the four
access sets are as follows:

{3, 4, 5, 7, 10, 11, 12, 14, 17, 18, 19, 21, 24, 25, 26, 28, 31, 32, 33, 35, 38, 39, 40, 42, 45, 46, 47},
{2, 5, 6, 7, 8, 12, 13, 14, 16, 19, 20, 21, 23, 26, 27, 28, 30, 33, 34, 35, 37, 40, 41, 42, 44, 47, 48},
{1, 3, 6, 7, 8, 10, 13, 14, 15, 17, 20, 21, 22, 24, 27, 28, 29, 31, 34, 35, 36, 38, 41, 42, 43, 45, 48},
{1, 2, 4, 7, 8, 9, 11, 14, 15, 16, 18, 21, 22, 23, 25, 28, 29, 30, 32, 35, 36, 37, 39, 42, 43, 44, 46}.

Participants 7, 14, 21, 28, 35, 42 appears in all access sets. Hence, any group
who can determine the secret must include these 6 participants. Each partici-
pant in the set {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, 24,
25, 26, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48} is in ex-
actly 2 access sets. In each access set, there are 27 participants. Such a secret
sharing scheme can be useful in big corporate where there are a few major
shareholders to make a decision.

4. Conclusions

In this paper, all 2-cyclotomic cosets modulo pn are constructed, when 2 is a
primitive root modulo pn and when the order of 2 is p−1

2 modulo p. Also, some
results on s-cyclotomic cosets modulo pq are obtained for three possible orders
of s modulo p and q, respectively, for distinct odd primes p, q. Note that not
much know results on 3-cyclotomic cosets modulo 2nrs, where r, s are distinct

72 Malaysian Journal of Mathematical Sciences



i
i

�Cyclotomic*Cosets,*Codes*and*Secret*Sharing� � 2017/9/14 � 14:01 � page 73 � #15 i
i

i
i

i
i

Cyclotomic Cosets, Codes and Secret Sharing

primes greater than 3, and n ≥ 1. Suppose 3 is a primitive root modulo r and is
also a primitive root modulo s. Furthermore, gcd(φ(r), φ(s)) = 2. Then, by the
help of computer we obtain four results; there are 9 3-cyclotomic cosets modulo
2rs, there are 18 3-cyclotomic cosets modulo 22rs, there are 36 3-cyclotomic
cosets modulo 23rs and there are 66 3-cyclotomic cosets modulo 24rs. Research
can be continued in proving the validity of these observations. Here, we also
used families of cyclotomic cosets to construct some codes of length 9, 25 and 49
with di�erent minimum distance and dimension, and hence used these codes to
de�ne some secret sharing together with their corresponding access structures.
The initial secret sharing results above are not comprehensive, further work in
subsequent papers should provide a more substantiate outcome.
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